

FLASH Radiotherapy in the era of Omics and AI?

Pr Jean Bourhis

Lausanne University Hospital, Switzerland

32th MRO, October 2022, Roma

Disclosure

R & D projects with PMB

Research projects with IntraOp

Member of Varian FLASH forward consortium

Advisory role for

MSD, ASTRA Zeneca, Mevion

BMS, Debiopharm, Roche,

Merck, Nanobiotix

FLASH seems like a « hot » topic

ASTRO

AMERICAN SOCIETY FOR RADIATION ONCOLOGY

Radiother Oncol : FLASH = highly citated topic in 2020-2022

What is FLASH ?

FLASH versus CONV dose rate :

Normal tissue sparing : FLASH versus CONV

Adapted from Montay-Gruel, 2022

Normal tissue sparing : FLASH versus CONV

Ex: Mouse Brain / FLASH versus CONV dose rate

Allen et al, Rad Res, 2020

Less inflammation

FLASH versus CONV dose rate

C: DV

Ultra high versus CONV dose rate : in vivo tumor models (rodents proton / electrons)

Favaudon 2014	Xenograft (leg) Ortho Syngenic	Breast HBCc-12A HNSCC HEP2 Lung TC1	Growth Delay mm Growth Delay mm Growth Delay biolum.	Isoeffect
Bourhis 2019	Xenograft (flank) Orthotopic	Glioma U87 Glioma H454	Growth delay mm Growth delay biolum .	Isoeffect
Montay Gruel 2020	Xenograft (flank) Orthotopic	Glioma U87 Glioma H454	Growth delay CT Growth delay biolum	Isoeffect
Chabi 2020	Xenograft (leukemia)	3 Patient-derived T-ALL	Cell number	Cell-specific Effect
Diffenderer 2020	Allograft (flank)	Pancreas MH641905	Growth delay mm	Isoeffect
Levy 2020	Orthotopic Syngenic	Ovarian (ID8)	Number & weight of tumors	Isoeffect
Cunningham	Allograft Syngenic	SCC (MOC 1 & 2)	Growth Delay mm	Isoeffect
Konradsson 2021	Rat	Glioma	Growth delay / cure	isoeffect

FLASH for tumors : data compatible with iso-effectiveness but ...

- Regrowth delay assays = measure the most radiosentitive tumor cell sub-population
- Tumor assays are not sufficiently sensitive to detect small variations

More tumor cure experiments needed

More studies with comparable quantities / uncertainties : TCP /NTCP

ESTR02022

Radiobiology Best Paper: Differential effect of PBS Proton FLASH on tumor co...

Room D3

Ask a question

FLASH more active than CONV in hypoxic tumor ??

Potential Mechanisms ... ?

DNA Damage ?

Reactive oxygen species

For clinical use, the FLASH effect has to be :

-1) Robust ?

-2) Reproducible ?

what are the optimal parameters ?

Overall delivery time is important ...

Overall treatment delivery time is important ...

Other parameters ?

Critical : Interval bewteen beams ++ ?

JF Germond, CHUV Lausanne

For clinical use, FLASH has to be :

-3) Clinically meaningful ?

What is the FLASH Modifying Factor (FMF) in mammalian tissues

CONV

Rate

in 2.87 minutes

Patient with a cutaneous lymphoma

Ultra High Dose

in 90 ms

Day 17: grade 1 (CTCAE v5)

Day 0

15 Gy

Same toxicity also @ 2 years (mild dermititis on biopsies)

Gaide et al, Radiother Oncol 2022

Clinical findings compatible with FMF for mammalian skin

Boehlen et al IJROBP 2022

For clinical use, the FLASH effect has to be :

-4) Maintained in large volumes ?

-5) Compatible with fractionated RT?

-6) Compatible with high precision RT delivery ?

For clinical use, the FLASH effect has to be :

-4) Maintained in large volumes?

-5) Compatible with fractionated RT ?

-6) Compatible with high precision RT delivery ?

FRACTIONATION ??

Hippocampus

Recent results by CHUV and UCI showing the FLASH effect in the brain with 10 x 3 Gy $\,$

FLASH versus CONV

in a veterinarian randomized

clinical trial

<u>Carla Rohrer Bley</u>¹, Friederike Wolf¹, Patrik Gonçalves Jorge³, Ioannis Petridis², Benoit Petit², Jean Bourhis², Valeria Meier¹, Marie-Catherine Vozenin²

 ¹ Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Switzerland
 ² Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/ CHUV, University Hospital and University of Lausanne, Switzerland
 ³ Institute of Radiation Physics, University Hospital and University of Lausanne, Switzerland

Are such high single dose doable with FLASH ?

Ultra High Dose Rate 30 Gy in 20 ms

Cat patients SCC nasal planum T1-2 N0

suisse-fakultät

Randomized

CONV Dose Rate 48 Gy in 10 fractions and 1 week

Rohrer et al Clin Cancer Res 2022

Arm 2: FLASH Single dose 30 Gy+ (hot spots > 40 Gy)

Mullum.

<u>Carla Rohrer Blev</u>¹, Friederike Wolf¹, Patrik Gonçalves Jorge³, Ioannis Petridis², Benoit Petit², Jean Bourhis², Valeria Meier¹, Marie-Catherine Vozenin²

¹ Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Switzerland
² Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/ CHUV, University Hospital and University of Lausanne, Switzerland
³ Institute of Radiation Physics, University Hospital and University of Lausanne, Switzerland

Ultra High Dose Rate 30 Gy in 3 pulses and 20 ms

Cat patients SCC nasal planum T1-2 N0

-fakultät

suisse-

Randomized

CONV Dose Rate 48 Gy in 10 fractions and 1 week 1/7 tumor failure

1/9 tumor failure

<u>Carla Rohrer Blev</u>¹, Friederike Wolf¹, Patrik Gonçalves Jorge³, Ioannis Petridis², Benoit Petit², Jean Bourhis², Valeria Meier¹, Marie-Catherine Vozenin²

¹ Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Switzerland ² Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/ CHUV, University Hospital and University of Lausanne, Switzerland ³ Institute of Radiation Physics, University Hospital and University of Lausanne, Switzerland

Ultra High Dose Rate 30 Gy in 20 ms Hot spots > 40 Gy

Cat patients SCC nasal planum T1-2 N0

Randomized

CONV Dose Rate 48 Gy in 10 fractions and 1 week 3/7 late necrosis

0/9 late necrosis

<u>Carla Rohrer Blev</u>¹, Friederike Wolf¹, Patrik Gonçalves Jorge³, Ioannis Petridis², Benoit Petit², Jean Bourhis², Valeria Meier¹, Marie-Catherine Vozenin²

¹ Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Switzerland ² Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/ CHUV, University Hospital and University of Lausanne, Switzerland ³ Institute of Radiation Physics, University Hospital and University of Lausanne, Switzerland

Ultra High Dose Rate 30 Gy in 20 ms Hot spots > 40 Gy

Cat patients SCC nasal planum T1-2 N0

-fakultät

Randomized

CONV Dose Rate 48 Gy in 10 fractions and 1 week

UHDR does not (fully) compensate for the lack of fractionation ... and sub optimal conformality

> 3/7 late necrosis 0/9 late necrosis

In the era of Omics and AI ...

Clinical translation was initiated in a very simplistic way ... !

Electrons (< 10 MeV)

Protons (transmission beam)

Biology

Technology

1895

2022

Technology

Biology

Technology

1) High energy...

3) higher and higher conformality

2022

1895

Clinical translation : where are we ?

FAST-01 : first clinical trial with Proton-FLASH

Cincinnati Children's/UC Health Proton Therapy Center

FAST 02 : To assess toxicities and pain relief of 8 Gy FLASH radiotherapy for bone metastases in the thorax

Sharma et al Lausanne FLASH Worshop 15th Sept and to be reported @ ASTRO 2022

Clinical translation

started with what we know and what is available

Electrons (low energy)

Limitations

Superficial targets Single beam direction Small volumes **Protons** (deep seated tumors)

Single beam direction

Clinical translation of FLASH electron-therapy @ CHUV

1) FLASH electron therapy for superficial skin cancers :

- IMPULSE phase I dose escalation trial (2021)
- Randomized trial FLASH versus conventional RT (2022)

2) Intra-operative FLASH electron therapy

for incompletely resected tumors (first patient 2022)

FLASHKNIFE

FLASHKNiFE FLASH RADIOTHERAPY

13

Press Releas

Lausanne and Geneva, September 15th 2020

Lausanne University Hospital and CERN collaborate together on a pioneering new cancer radiotherapy facility

IMPULSE dose escalation trial

Phase I dose escalation trial for melanoma skin metastases

3 x 3 dose escalation : 22 Gy to 34 Gy

Primary endpoint : DLT / MTD

Small fields < 30 cc Large fields 30-100 cc (Vozenin 2019)

UHDR parameters

> 2 Gy / pulse < 10 pulses Delivery time < 100 ms

Status : recruiting (7 patients)

Dose escalation trial 7 dose levels (22- 34 Gy in steps of 2 Gy)

Hypothesis tested :

 D_{UHDR} =34Gy $\triangleq D_{FMF}$ = 25.8 Gy (21.8-29.9)

 D_{UHDR} =32Gy \triangleq D_{FMF} = 24.6 Gy

 D_{UHDR} =30Gy $\triangleq D_{FMF}$ = 23.4 Gy (20.1-27.3)

 D_{UHDR} =26Gy $\triangleq D_{FMF}$ = 21.6 Gy (18.7-24.7)

Impulse : a phase I of high dose rate RT in patients with skin metastases from melanoma

Second Investigational Trial of UHDR vs normal dose rate for skin cancers

(with O Gaide, R Kinj, W Jeanneret, F Duclos, R Moeckli, P Jorge, and J Bourhis)

This is a randomized selection phase II study, with 1 to 1 randomization to:

For T1 (small) lesions:

- Arm A : 22 Gy single dose FLASH radiotherapy
- Arm B : 22 Gy single dose conventional radiotherapy

For T2 (large) lesions:

- Arm C : 5 x 7 Gy fractionated dose FLASH therapy (5 fractions in 2 weeks)
- Arm D : 5 x 7 Gy fractionated dose conventional radiotherapy (5 fractions in 2 weeks)

Intra Operative RadioTherapy with FLASH electrons : (IORT)

1) Could FLASH revigorate IORT ?

- High single dose electrons are already used in conventional IORT

- FLASH could allow + 4-5 Gy
- 2) Need for a stepwise and careful approach +++

- Toxicity from surgery can be high and perhaps not wise to use it as primary endpoint

3) Ongoing Initiatives :

- IntraOp with Mobetron. Brussels, Heidelberg, MDACC (2023) : pancreatic cancers
- PMB with FLASHKNiFE (start in 2023) : head and neck, abdominal expected to be R1
- SIT (Antwerpen) : Breast cancers 2023

FLASHKNiFE FLASH RADIOTHERAPY

Integration @ CHUV in a compact horizontal layout

FLASH in the era of OMICs and AI : temporary conclusions

- 1) Potential additional tool for increasing the differential effect tumor / normal tissues ?
 - Promising and consistent
 - Q? mechanisms? effects on tumor cure? combination with drugs?
- 2) Optimal parameters for a FLASH effect ?
 - Overall delivery time < 100-200 ms
 - Q? large fields? Fractionation?, interval between beams able to maintain sparing effect at the margin of the PTV?
- 3) Beam control, diagnostics, monitoring
 - Available for first clinical testing
- 4) Clinical translation : stepwise approach
 - First trials ongoing for skin tumors with electrons + deep seated tumors with transmission beam protons (palliative)
 - Q: how to maintain high conformality in 100 ms?

Acknowledgments

To the CHUV FLASH therapy team

Pr Vozenin

Pr Bochud (IRA)

UNIL & CHUV : Pr P Eckert, Mr O Peters, Pr JD Tissot, Pr PF Leyvraz,

DO : Pr Coukos, Pr Kandalaft & l'équipe du CTE

Sponsors : ISREC & Biltema Foundation, Foundation CePO, Fond'Action, FNS, ANR, PO1, Foundation CHUV

Partners : PMB, CERN, IntraOp, RaySearch